ESP8266-01 mit Arduino Due programmieren

Im meinem Blog zur Modellfernsteuerung mit Webbrowser habe ich bereits einen Programmieradapter für den ESP8266-01 vorgestellt.  Die Schaltung kann vereinfacht werden, wenn man einen Arduino Due einsetzt.

Der Arduino Due basiert im Gegensatz zu den meisten anderen Arduino Boards auf einem Controller mit 3,3 Volt Logik und kann daher zwei Funktionen übernehmen:

  • USB zu UART Adapter mit 3,3 V Ausgangspegel
  • Spannungsquelle für die vom ESP8266 benötigten 3,3 V

Das Verdrahtungsschema ist im Titelbild für diesen Beitrag  dargestellt. Zusätzlich ist zu beachten, dass der Arduino Controller „still zu legen“ ist, damit er die Programmierung des ESP8266 nicht stört. Hierzu wird der Reset des Due fest mit GND verbunden.

Der praktische Aufbau des Programmieradapters kann auf einem Prototyp-Board erfolgen.

Hierbei wird der ESP8266-01 über einen Breakout-Adapter verbunden, da der Stecker nicht für den Einsatz in einem Prototyp-Board geeignet ist.

Arduino Pic Programmer

Übersicht

Es gibt diverse Bauanleitungen zu Pic Programmern im Internet. Diese benötigen jedoch oftmals entweder eine der inzwischen ausgestorbenen seriellen oder parallelen Schnittstellen oder einen bereits programmierten Controller – und setzen damit wiederum einen Programmer voraus.

Einen interessanten dritten Weg bietet die Verwendung eines Arduino als Controller (s. ArdPicProg). Mit dem Arduino Sketch „ProgramPic“, einem PC-Programm und mit einer sehr überschaubaren Anzahl von Bauteilen wird der Arduino mit wenig Aufwand zum Pic Programmer, der neben einem Programmiersockel auch eine ICSP- und eine ICD-2 (RJ-11) Schnittstelle bietet. Alle erforderlichen Lösungskomponenten einschließlich der Hardware Dokumentation sind als Open Source sowie als Bausatz verfügbar.

Einen weitergehenden Eindruck zum Aufbau und dem Einsatz des ArdPicProg sowie einen Überblick der unterstützten Controller bietet der User’s Guide (in Englisch).

Host-Software für ArdPicProg

Zur Programmierung eines Pic Controllers wird ein Host Program benötigt. Hierzu stehen zwei Programme zur Verfügung: das zeilenorientierte Programm „Ardpicprog“ oder das Programm „Arduino Pic Programmer (ArdPicProgHost)“ mit einer grafischen Bedieneroberfläche. Beide Programme sind als Open Source auf Github verfügbar.

Arduino Pic Programmer (ArdPicProgHost)

Das Programm bietet die Möglichkeit zur zeitgemäßen und intuitiven Bedienung des Arduino Pic Programmers über eine Windows-Bedieneroberfläche.

Pic-Controller, die der Arduino Programmer unterstützt, können ausgelesen, gelöscht und programmiert werden. Die Programmbedienung ist ebenfalls im User’s Guide erläutert.

ArdPicProgHost ist Open Source und wurde mit Microsoft VB2010 Express realisiert. Der Source Code wird unter den Bedingungen der GNU General Public License Version 3 über ein entsprechendes Github Repository zur Verfügung gestellt. Die aktuelle ablauffähige Version dieses Programms (Release 0.2.7) für Windows 7 ArdPicProgHost.exe kann hier heruntergeladen werden:

 

Eine Softwareinstallation ist nicht erforderlich: nach dem Download und dem Auspacken des Programms kann dieses direkt ausgeführt werden.

PicProgHost (Terminalprogramm)

Das Programm PicProgHost basiert auf dem Open Source Projekt Ardpigprog, ist auf den ArdPicProg-Projektseiten dokumentiert und dort auch als Open Source verfügbar.

Der Sourcecode wurde inzwischen in Qt 5 migriert und die aktuelle Version 1.0 unterstützt nun auch die COM ports > 9. Die ablauffähige und aktuelle Programmversion für Windows 7 kann hier heruntergeladen werden:

 

Der Sourcecode ist im PicProgHost github Repository verfügbar. Die Programmparameter sind rückwärtskompatibel zu Ardpicprog und daher ebenfalls den ArdPicProg-Projektseiten zu entnehmen.

Eine Programminstallation ist nicht erforderlich. Die Programmbedienung wird ebenfalls im User’s Guide erläutert.

Arduino Sketch „ProgramPic“

Der Sketch „ProgramPic“ ist im ProgramPic github Repository verfügbar.

ArdPicProg Leiterplatte

Im Store können Sie die unbestückte Leiterplatte erwerben und die Bauanleitung herunterladen.

Modellfernsteuerung mit Webbrowser – verbesserte Bedieneroberfläche

Vor einigen Tagen bin ich auf das ESP8266 MikroE Buggy Projekt gestoßen.

In diesem Projekt wird ein Webserver auf dem ESP8266 implementiert – ähnlich wie in meinem Blog Modellfernsteuerung mit Webbrowser. Damit kann dann ebenfalls eine Betriebssystem-neutrale Fernsteuerung realisiert werden. Besonders interessant an diesem Projekt ist allerdings die einfache HTML5 Oberfläche, mit der ein Joystick realisiert wird.

 

Die Software ist Open Source und so konnte ich das Programm für den Einsatz in einem PiKoder/SSC wRX umstellen. Zusätzlich habe ich den Code so verändert, dass ein normales Fahrzeug mit einem Motor- und einem Richtungskanal gesteuert werden kann. Der angepasste Source Code steht in einem github Repository zur Verfügung.

Die Programmierung des ESP8266 ist ebenfalls im Blog zur Modellfernsteuerung mit Webbrowser beschrieben. Eine zusätzliche Besonderheit des ESP8266 MikroE Buggy Projekts besteht darin, dass das Arduino Filesystem benutzt wird. Die Installation und Benutzung ist hier beschrieben.

 

 

ESP8266-01 Sketch für den PiKoder/SSC wRX

Der PiKoder/SSC wRX verwendet das ESP8266-01 als Access Point (AP) zur Realisierung einer transparenten seriellen Kommunikation. Diese Anforderung lässt sich mit der Konfiguration über AT-Befehle realisieren. Allerdings ist dieser Weg unnötig kompliziert und aufgrund der zahlreichen Eingaben Fehler trächtig. Hinzu kommt, dass sich das Parametrierungsergebnis nur schwer verifizieren lässt und für Änderungen eine Neuprogrammierung des ESP8266 erforderlich ist.

Wesentlich einfacher ist es, den ESP8266-01 mit einem Sketch zu laden, der hinsichtlich der seriellen Kommunikation die identische Funktion realisiert und zusätzlich mit einigen effektiven Kommandos die Einstellung der benötigten AP-Parameter ermöglicht.

Der benötigte Sketch udpRC_ESP8266-01 ist Open Source und steht in einem github-Repository zum Download bereit. Die Firmware wird über das Arduino IDE, wie im Beitrag Modellfernsteuerung mit Webbrowser beschrieben, in den ESP geflasht.

Die Bedienung ist denkbar einfach. Beim ersten Start überprüft das Programm den Speicher des ESP8266, ob bereits ein gültiger Parametersatz vorliegt. Ist dies nicht der Fall, dann werden die Defaultwerte abgelegt. Nach einem erneuten Start ist der Controller dann mit Defaultwerten einsatzbereit.

Der Screenshot zeigt die Bedienung und die verfügbaren Kommandos. Nach dem Reset meldet sich der ESP8266-01 mit einigen unlesbaren Zeichen, die die Betriebsbereitschaft anzeigen.

Mit dem Kommando ‚$?<cr><lf>‘ wird der aktuelle Parametersatz abgefragt und ausgegeben. Die SSID des AP wird mit dem Kommando ‚$s=‘ gefolgt von <cr><lf> geändert und zur Veränderung des Passwords wird ‚$p=‘ eingesetzt. Die neuen Parameter werden zwar direkt abgespeichert aber erst nach einem Neustart verwendet. Nach erfolgreicher Parametrierung können die geänderten Einstellungen jederzeit mit ‚$?<cr><lf>‘ abgefragt werden.

Modellfernsteuerung mit Arduino über XBee

Durch die Kombination der Arduino-basierten digitalen Open Source Fernsteuerung arduinodtx mit einem intelligenten Servocontroller wie dem PiKoder/SSC, einem XBee Shield und einem XBee Modul entsteht eine hochwertige Modellfernsteuerung.

Hierbei wird eine transparente Übrertragung eingesetzt, so dass keine Anpassungen an der Arduino Software oder der PiKoder/SSC Firmware erforderlich sind; es steht der volle Funktionsumfang der Fernsteuerung zur Verfügung.

Der prinzipielle Aufbau des Senders mit der Jumperstellung für das Arduino XBee Shield ist im Bild unten dargestellt, die Verdrahtung der Steuerknüppel entspricht dem Aufbau auf der arduinodtx Webseite.

xbee-digital-rc_404p

Der Aufbau des kompletten Empfängers bestehend aus dem XBee-Breakout Adapter, dem PiKoder/SSC und einem Spannungswandler zur Erzeugung der benötigten 3,3 Volt Versorgungsspannung sowie die Programmierung der XBee Module ist in der PiKoder/SSC Application Note #3: XBee Communication detailiert beschrieben.

complete-receiver-unit

Prototyp Empfängeraufbau

Modellfernsteuerung mit Webbrowser

Ein Fernsteuermodell, dessen Empfänger als Access-Point konfiguriert ist und einen Webserver anbietet, kann mit einem Webbrowser von einem Smartphone aus ferngesteuert werden.

Als Hardwareplattform zur Implementierung dieses Konzepts bietet sich der PiKoder/SSC wRX an (s.u.): der ESP8266-01 realisiert den Access Point und den Webserver, der PiKoder/SSC übernimmt die zeitkritische Ansteuerung der Modellservos.

pikoder_ssc_wrx-catalogue-image-png

PiKoder/SSC wRX

In der Standardkonfiguration des PiKoder/SSC wRX wird der ESP8266-01 als transparente Brücke verwendet. Da zur Modellfernsteuerung mit dem Browser ein Webserver benötigt wird, ist der Wifi-Controller mit neuer Firmware zu laden. Hierzu kommt das IDE des Arduino zum Einsatz, das inzwischen auch generische ESP8266 Boards unterstützt.

Der benötigte Sketch ist Open Source und wird über das github Repository makerprojects/httpRC verteilt. Laden Sie den Sourcecode herunter und öffnen den Sketch mit dem Arduino IDE. Am Anfang des Programms finden Sie Hinweise zu den benötigten Boardeinstellungen.

Der ESP8266-01 kann zum Flashen nur über einen USB-Serial-Umsetzer mit dem PC verbunden werden, da er nicht über eine USB-Schnittstelle verfügt. Hierbei ist zusätzlich zu beachten, dass das Modul eine Spannungsversorgung und Signalpegel von 3,3 Volt benötigt; der direkte Anschluss von 5 Volt zerstört die Leiterplatte! Da diese Kombination bei USB-Serial-Umsetzern nicht ganz alltäglich ist, wird üblicherweise ein Umsetzer mit 3,3 Volt Signalpegel und einem 5 Volt Spannungsausgang gewählt wie beispielsweise der bei Ebay erhältliche PL2303TA und eine zusätzliche Spannungsanpassung mit einem 3,3 Volt Regler vorgesehen.

usb-connector-ebay

USB-Serial Umsetzer

Da man zum Flashen außerdem noch einen Reset-Taster und einen Programmiertaster benötigt, baut man sich zweckmäßigerweise einen entsprechenden Adapter auf einer Lochrasterplatine auf.

programmieradapter-esp8266

Programmieradapter für den ESP8266-01

Der Schaltplan für den eigentlichen Programmierteil ist in der folgenden Schaltung dargestellt.

esp8266_flash_prog_board_sch

Die Erzeugung der ebenfalls benötigten 3,3 Volt kann genauso wie beim PiKoder/SSC wRX mit einem Standard-Lowdrop-Spannungsregler LF 33 CV erfolgen (s. Schaltplanauszug; die 5 Volt vom USB-Serial-Adapter werden rechts angeschlossen, der Ausgang ist auf der linken Seite.

spannungsanpassung

Leider startet die Programmierung des ESP8266 nicht automatisch wie man dies vielleicht vom Arduino gewöhnt ist, sondern ist manuell einzuleiten. Hierzu werden der RST und der PROG Taster gleichzeitig gedrückt und der RST-Taster bei noch gedrücktem PROG-Taster losgelassen. Wenn danach dann auch der PROG-Taster losgelassen wird, befindet sich das Modul im Programmiermodus. Nun kann das Upload gestartet werden und nach der erfolgreichen Programmübersetzung wird die neue Firmware aufgespielt. Bevor das Modul eingesetzt werden kann, ist ein weiterer Reset erforderlich.

Modellfernsteuerung über WLAN mit Smartphone

Dieser Beitrag zeigt, wie einfach es ist, ein ferngesteuertes Modellauto – hier einen Crawler – auf eine Fernsteuerung mit dem Smartphone und WLAN umzurüsten. Durch die Verwendung des Pretzelboardes als Empfänger beschränkt sich der Hardware-Bauaufwand auf eine Prototyp-Leiterplatte zur elektrischen und mechanischen Adaption des Boardes. Der benötigte Sketch sowie die Android App stehen im Beitrag zum Download bereit.

Aufbau Empfänger

Die Schaltung des Empfängers kann durch den Einsatz des Pretzel Boardes sehr einfach gehalten werden. Die Spannungsversorgung  erfolgt über den Fahrtregler, der normalerweise auch den „traditionellen“ Empfänger mit 5 Volt versorgt (BEC – Battery Elimination Circuit) und ausreichend Leitung bereitstellt.

Achtung: bitte immer sicherheitshalber nachmessen, um eine Zerstörung des Pretzelboardes durch zu hohe Spannung zu vermeiden!

Schematic Receiver Crawler

Von daher wird der Empfänger zweckmäßigerweise unter Verwendung einer Lochrasterplatine, die über zwei Buchsenleisten das Pretzelboard aufnimmt und zwei dreipolige Stiftleisten für den Anschluss des Lenkservos und den Fahrtregler (ESC) realisiert.

Einbau Empfänger

Der Empfänger wird mechanisch mit Klettband an einer geeigneten Stelle im Modell befestigt.

Schließlich ist der Controller Sketch „UDP_RC.ino“ zu laden, der über github bereit gestellt wird.

Installation Android App „udpRC4NanoESP“

Die als Sender benötigte Android App „udpRC4NanoESP“ kann über den folgenden Link im Google Play Store kostenlos bezogen werden.

Start der Fernsteuerung

Zunächst wird der Empfänger eingeschaltet, der nach dem Booten den Hotspot „NanoESP“ anbietet. Das Android Smartphone ist über die Einstellungen mit diesem Hotspot zu verbinden.

Dann wird die udpRC4NanoESP-App gestartet und die gewünschte Bedieneroberfläche im Hauptmenü ausgewählt….

 

Servosteuerung mit Arduino über I2C

Modellbauservos sind in unzähligen Varianten erhältlich und können aufgrund hoher Stückzahlen preiswert angeboten werden. Daher finden Servos in großem Umfang über den Bereich des Modellbaus hinaus in Robotern, Drohnen und anderen Projekten, in denen Bewegungen realisiert werden muss, Verwendung.

Bei zeitkritischen Anwendungen realisieren Serielle Servo Controller die Schnittstelle zwischen einem PC oder einem Microcontroller wie einem Raspberry Pi oder Arduino als Hostrechner und den Modellbauservos. Außerdem spart ein SSC Controller PINs, von denen es ja nie genug geben kann, da mehrere Servos über einen PIN gesteuert werden können.

Die Auswahl des richtigen Servo Controllers hängt von der Anwendung ab. Für kleinere Projekte kommen überwiegend SSC mit einer UART Schnittstelle zum Einsatz.

Für größere Systeme mit mehreren eigenintelligenten Baugruppen (Beispiel Roboter) bietet der I2C Bus der PiKoder/SSC PRO Familie gegenüber einer UART-Verbindung den Vorteil, dass nur zwei Pins des Host-Controllers benötigt werden, um ein gesamtes Netzwerk anzusteuern. Ein einfaches, dem miniSSC sehr ähnliches Protokoll, steuert die einzelnen Servos.

Der I2C Bus bringt weitere Vorteile:

  • die bidirektionale Kommunikation und Konfliktauflösung wird über die vorhandene Buslogik sicher gestellt und
  • die Buslogik ist bereits in der Hardware realisiert, so dass der Rechenzeitbedarf aller Baugruppen für Kommunikationsaufgaben minimal ist.

Mit vorhandenen Baugruppen und fertigen Libraries ist die Ansteuerung einfach zu realisieren. Der folgende Sketch zeigt die Ansteuerung eines Modellbauservos mit dem Arduino über I2C.

// Control of RC servos by I2C with PiKoder/SSC PRO
// For more details on the PiKoder/SSC PRO goto www.pikoder.com
#include Wire.h
int x = 0;
int rc = 0;
void setup() {
  Serial.begin(9600); // Setup of host communication
  Wire.begin(); // Start I2C communication
}

void loop() {
  do { // make sure to sent message
    Serial.print("Servo position = ");
    Serial.print(x);
    Wire.beginTransmission(byte(0x40)); // Address Pikoder/SSC PRO
    Wire.write(byte(0x1)); // Servo @ channel 1
    Wire.write(byte(x)); // Transmit new servo position
    rc = Wire.endTransmission();
    Serial.print(" - Return code: ");
    Serial.println(rc);
    } while (rc != 0);
  x = (x + 20)% 255;
  delay(1000);
}

Weitere Informationen zum PiKoder/SSC PRO wie ein ausführliches USER’s Manual und Schaltungsvorschläge finden Sie auf der PiKoder/SSC PRO Webseite.

Servoansteuerung mit der Arduino Servo Library

Genauigkeit der Impulserzeugung

Ich habe mich gefragt, wie genau die Erzeugung der Impulslänge der Arduino Servo Library ist, da in der Beschreibung auf entsprechende Limitations hingewiesen wird:

„Limitations

This library does not stop your interrupts, so millis() will still work and you won’t lose incoming serial data, but a pulse end can be extended by the maximum length of your interrupt handles which can cause a small glitch in the servo position. If you have a large number of servos there will be a slight (1-3 degrees) position distortion in the ones with the lowest angular values.“

Quelle: http://playground.arduino.cc/ComponentLib/Servo

Hierzu habe ich zunächst mit dem PiKoder/PROBE die Impulslängen von 1.000 aufeinanderfolgenden Impulsen im unbelasteten Zustand, also auf dem Arduino wurde nur die Servo Library ausgeführt, gemessen. Bei einer Soll-Impulslänge von 1.500 µs ergibt sich folgende Verteilung der Impulslängen:

Verteilung ohne Last

Die erzeugten Impuls sind zwar etwas zu lang, aber die Streuung ist relativ gering und der Längenunterschied zwischen dem kürzesten und dem längstem Impuls beträgt nur 0,6 µs.

Die Verteilung der Impulslängen ändert sich deutlich, wenn auf dem Arduino weitere Anwendungen ablaufen und so zusätzliche Last erzeugt wird. Im folgenden Beispiel wird parallel zur Impulserzeugung der Programmspeicher eines PIC Controllers ausgelesen und über die USB Schnittstelle an einen PC übertragen.

Verteilung mit Last

Wie im Bild sichtbar ist, nimmt damit die Streuung der Impulslängen deutlich zu, da der Arduino immer wieder durch andere Aufgaben abgelenkt wird; der längste Impuls in dieser Messreihe hatte eine Länge von 1.508 µs.

Von daher ist bei einer hohen Anforderung an die Genauigkeit der Impulslänge und einer entsprechenden Prozessorauslastung des Arduino der Einsatz eines intelligenten Servo Controllers anzuraten – zumal davon auszugehen ist, dass sich die Genauigkeit und die Streuung beim Einsatz von mehr als einem Servo weiter verschlechtert.

 

Baudrate Bluetooth shield mit Arduino einstellen

Für mein Projekt einer digitalen Bluetooth-Fernsteuerung mit meinem PiKoder Serial Servo Controller auf http://www.pikoder.de/Bluetooth_RC.htm ergab sich die Anforderung zum Einsatz eines Arduino Bluetooth Shield auf der Senderseite. Da dieser Shield defaultmäßig mit 38400 Baud arbeitet, aber mein Controller 9600 Baud benötigt, ergab sich die Notwendigkeit zur Änderung der Baudrate.Diese Anpassung wollte ich nur mit einem Arduino vornehmen und keine weiteren Hilfsmittel, wie USB-Serial-Adapter einsetzen – zumal der Arduino bereits die benötigten 3,3 V Betriebsspannung für den Shield zur Verfügung stellt. Der einfachste Weg hierzu ist der Einsatz der USB-Schnittstelle des Arduino selber, da bei dieser Schnittstelle die Baudrate über den Arduino Serial Monitor vom Bediener angepasst werden kann.

Um jegliches „Störfeuer“ an den Digitalpins zu vermeiden, wird der Reset-Eingang des Arduino fest mit GND verbunden und der Controller so „still gelegt“.

Danach habe ich den Bluetooth Shield aufgesetzt und die Jumperstellung für RX und TX gemäß dem folgenden Bild vorgenommen.

Jumpereinstellungen
Stellung der Jumper auf dem Bluetooth-Shield

Jetzt wird der Serial Monitor gestartet. Die Baudrate wird auf 38400 eingestellt. Zur Einhaltung des Protokolls ist es außerdem wichtig, dass am Zeilenende sowohl NL als auch CR übertragen werden. Nachdem ich einige leere Zeilen geschickt habe, erschien nach diversen unlesbaren Zeichen die Meldung „ERROR“.

Screenshot 1
Screen Shot: Beginn der Programmierung

Nun wird die Programmierung durch die Übertragung einer weiteren leeren Zeile (entsprechend NL und CR) gestartet und das Kommando zur Umstellung der Baudrate auf 9600 eingegeben.

Screen Shot 2
Screen Shot 2: Eingabe des Kommandos zur Baudratenumstellung

Nach dem Senden wird die erfolgreiche Ausführung mit „OK“ quittiert Die folgenden Statusmeldungen werden mit der neuen Baudrate 9600 ausgegeben und sind daher hier nicht zu lesen.

Screen Shot 3
Screen Shot 3: Quittierung der neuen Baudrate

Zur Überprüfung kann die Baudrate am Serial Monitor nun auf 9600 umgestellt werden. Nach einem Reset des Arduino wird dann ein Kommando eingegeben – ich habe die Baudrate einfach nochmal auf 9600 gestellt – und der Shield meldet sich nun mit einer lesbaren Statusmeldung.

Screen Shot 4
Screen Shot 4: Prüfung der Programmierung mit neuer Baudrate

Damit ist die Programmierung abgeschlossen.