Joystick Modellfernsteuerung mit Spektrum DXe

Überblick

In diesem Beitrag wird dargestellt, wie ein Spektrum DXe Fernsteuersender mit Hilfe eines USB2PPM Adapters und eines Notebooks genutzt werden kann, um einen Quadrocopter mit einem Joystick zu fliegen. Diese Anwendung ist insofern besonders interessant, weil so die fast verzögerungsfreie Kommandobearbeitung überprüft werden kann. 

Das Projekt umfasst folgende Schritte:

  • Vorbereitung des Fernsteuersenders
  • Aufbau des USB2PPM Adapters
  • Download des Joystick2PPM Programms
  • Einstellungen und Inbetriebnahme

Zusätzlich zum Fernsteuersender, PC oder Notebook mit Windows 10, USB2PPM-Adapter und dem Joystick wird noch ein Trainerkabel zur Verbindung des Fernsteuersenders mit dem USB2PMM sowie ein USB-Kabel benötigt.

Vorbereitung des Fernsteuersenders

Die Ansteuerung des Spektrum DXe Fernsteuersenders erfolgt drahtgebunden über die Lehrer-/Schülerbuchse auf der Rückseite des Senders. An dieser Buchse kann ein fremdes PPM-Signal eingespeist werden – in der Regel von einem zweiten Sender, dem Schülersender. Bei der Buchse handelt es sich um eine 3,5 mm Standard-Klinkenbuchse und die Kabelverbindung wird über ein entsprechendes Mono-Aux-Kabel hergestellt. 

Damit der Lehrer jederzeit schnell die Kontrolle übernehmen kann, wird das Signal des Schülers nur übermittelt, solange der Lehrer den Bindeknopf / Panikbutton gedrückt hält. Diese praktische Umsetzung des Lehrer – Schülerbetriebs erschwert natürlich eine dauerhafte Übernahme des Senders, da man den Taster ja wahrscheinlich nicht die ganze Zeit gedrückt halten kann oder will.

Von daher habe ich in meinen Spektrum DXe einen zusätzlichen Schalter eingebaut, um den Fernsteuersender dauerhaft auf Schülerbetrieb umstellen zu können. Obwohl der Einbau einfach ist, sollte man diesen nur in Erwägung ziehen, wenn man den Verlust der Gewährleistung in Kauf nimmt.

Einbau des Zusatzschalters für den permanenten Schülerbetrieb

Das Gehäuse wird wie in der Betriebsanleitung beschrieben geöffnet. In der Rückseite befindet sich schon eine Bohrung an der idealen Position, die von außen durch einen Aufkleber überdeckt ist (s. roten Pfeil im Bild). 

Die Bohrung wird freigelegt und der zusätzliche Schalter eingesetzt (s. Details).

Die Verdrahtung erfolgt so, dass der Bind/Panik/Trainer-Taster überbrückt wird (s. Bild). Hierzu wird ein kurzes Drahtstück an der kleinen Leiterplatte angelötet.

Ich habe dann noch außen einen kleinen Pfeil angebracht, damit ich immer weiß, in welcher Betriebsart sich der Sender befindet (s. Bild).

Aufbau des USB2PPM Adapters

Der USB2PPM wird gemäß der Bauanleitung realisiert, allerdings entfällt der letzte Schritt (einlöten der dreipoligen PIN-Leiste für das PPM Signal). Stattdessen wird zum Anschluss an den Spektrum DXe eine 3,5 mm Klinkenbuchse im Experimentierfeld der Leiterplatte untergebracht (s. Bild).

Adaption USB2PPM for Spektrum DXe

Damit liegen dann alle Hardwarevoraussetzungen für den Aufbau der Fernsteuerung vor.

Download des Joystick2PPM Programms

Das Joystick2PPM Programm übernimmt die Auswertung der Joystick-Positionen und die Umsetzung in entsprechende Kommandos an den USB2PPM. Dieser wiederum erzeugt den PPM-Impulsrahmen als Eingangssignal für den Fernsteuersender. 

Das Joystick2PPM-Programm ist Open Source und kann von der USB2PPM – Controller Seite heruntergeladen werden. Es handelt sich um ein Java-Programm, das nur extrahiert werden muss; eine Installation ist nicht erforderlich. In Einzelfällen kann es jedoch sein, dass noch die Java-Laufzeitumgebung installiert werden muss.

Einstellungen und Inbetriebnahme

Verbinden Sie nun den USB2PPM Adapter und den Joystick mit Ihrem PC. Bei der erstmaligen Verbindung wird Windows 10 automatisch Treiber installieren und den Adapter einer COM-Schnittstelle zuordnen. Nach Abschluss der Treiberinstallation starten Sie das Programm Joystick2PPM  durch Aufruf des Start-Windows Batch File (start x64.bat bei einem 64 Bit System bzw. start x86.bat bei 32 bit).

Als nächstes konfigurieren Sie nun den Joystick und ordnen den einzelnen Bedienelementen Kanäle der Fernsteuerung zu. Wechseln Sie hierzu in den Reiter mit der Bezeichnung Ihres Joysticks.

Zunächst ordnen Sie sinnvollerweise „Throttle“ dem „Slider“ zu. Hierzu klicken Sie auf den „+ Button“ vor Slider und es erscheint ein Auswahlfenster. Bitte bestätigen Sie die Zuordnung.

Die Zuordnung der weiteren Kanäle erfolgt dann analog durch Anwahl der + Taste. In meinem Fall habe ich die Y-Achse auf Kanal 2, die X-Achse auf Kanal 3 und die Rotation auf Kanal 4 gelegt. 

Wählen Sie die COM-Schnittstelle für den USB2PMM unter „Port Settings“ nun aus und klicken auf den „Connect“-Button. Wenn Sie das Command-Fenster noch offen haben, dann sehen Sie die Kommandos, die zyklisch an den USB2PPM-Adapter übertragen werden.

Nun schalten Sie Ihre Fernsteuerung ein und stellen sicher, dass der Sender mit dem Fernsteuermodell „gepaired“ ist (Trainerschalter auf „aus“). Verbinden Sie nun, ohne den Fernsteuersender auszuschalten, den USB2PPM-Adapter mit dem Trainingskabel mit dem Fernsteuersender. Sobald Sie dann den Trainerschalter einschalten, können Sie Ihr Modell mit dem Joystick fernsteuern. Die Trimmung für die einzelnen Kanäle und eine eventuelle Servo-Richtungsumkehr nehmen Sie bei Bedarf am PC vor.

 

WLAN Modellfernsteuerung mit Arduino

Der Open Source Arduino Sketch arduinodtx implementiert die Bedieneroberfläche und die Bedienelemente für einen leistungsfähigen Modellfernsteuerungssender mit einem seriellen Kommandoausgang (PiKoder/SSC bzw. PiKoder/PPM kompatibel). Für die Kommandoübertragung zum PiKoder wird ein transparenter serieller Kommunikationskanal benötigt.

Soll WLAN als Übertragungsweg genutzt werden, dann kann ein solcher Kanal senderseitig mit einem ESP8266-01 Modul realisiert werden; als Empfänger kommt ein PiKoder/SSC wRX zum Einsatz.

In diesem Fall werden neben den Basiskomponenten wie Steuerknüppeln, Schalter, etc., die zum Aufbau des arduinodtx-basierten Fernsteuersenders erforderlich sind, ein Logic Level Umsetzer von 5 auf 3,3 Volt, zwei Jumper zur Umschaltung der seriellen Kommunikationsschnittstelle (UART-Multiplexer) und ein ESP8266-01 Modul benötigt wie im Beitragsbild dargestellt. Die Verdrahtung entnehmen Sie dem folgenden Schaltbild (die Signale mit gleicher Bezeichnung müssen verbunden werden, Signale in blauer Schrift sind mit den entsprechenden Arduino-Signalen zu verbinden):

Der Aufbau ist relativ einfach und sollte problemlos auf einem Prototyp-Board erfolgen können.  

Im nächsten Schritt ist der ESP8266-01 als Access Point mit seriellem Ausgang zu programmieren – die Beschreibung hierzu finden Sie im Blog ESP8266-01 Sketch für den PiKoder/SSC wRX. Wollen Sie den ESP8266-01 im „eingesetzten Zustand“ programmieren, dann müssen Sie die dargestellte Schaltung um einen Programmierteil erweitern:

Bitte beachten Sie auch die Jumperstellung für D0/D1. Zusätzlich sollte bei jeder direkten Kommunikation mit dem ESP8266-01 der Arduino „stillgelegt“ werden (RESET Leitung auf GND legen), so dass die Datenübertragung nicht gestört wird.

Mit dem erfolgreichen Abschluss der Programmierung des ESP8266-01, dem Umstecken der Jumper, Aufwecken des Arduino und einem Reboot ist die Modellfernsteuerung betriebsbereit. 

 

Ardupilot Mega Rover mit Smartphone fernsteuern

Überblick

In den typischen Anwendungen des Ardupilot Mega erfolgt die manuelle Kontrolle des Modells mit einer Modellfernsteuerung: der Empfänger bedient die Eingänge des APM mit PWM Signalen um sowohl die Bewegungen des Modells zu kontrollieren, als auch zur Auslösung von Sonderfunktionen und zur Umschaltung zwischen verschiedenen Flugmodi.

Wenn man den konventionellen Fernsteuerempfänger durch einen PiKoder-Empfänger wie den WLAN Empfänger PiKoder/SSC wRX ersetzt, dann kann der Ardupilot, beispielsweise in der Rover Konfiguration, über ein Smartphone gesteuert werden. Als Bedieneroberfläche können für diesen Anwendungsfall entweder die Android – Fernsteuerapps udpRC oder picCAR zum Einsatz kommen oder die im vorherigen Beitrag beschriebene Browser Oberfläche.

Realisierung

Zunächst wird der APM mit dem Mission Planer mit der ROVER – Konfiguration geladen; eine weitere Anpassung der Parameter war in meinem Fall nicht erforderlich.

Im folgenden Bild ist der sehr einfache Hardwareaufbau dargestellt.

Der PiKoder – Kanal 1 wird mit dem APM Eingang 1 (Steering) und der PiKoder – Kanal 2 mit dem Eingang 3 (Throttle) verbunden. An der Ausgangsseite wird die Standard-Rover-Verdrahtung verwendet (Lenkservo an Kanal 1, ESC mit BEC an Kanal 3). In dieser Konfiguration übernimmt der Ardupilot die Spannungsversorgung des Empfängers.

Der Ardupilot reagiert nicht auf PWM-Signale, die den typischen Bereich von ca. 1.000 – 2.000 µs unter- bzw. überschreiten. Von daher sind die Minimal- und Maximalwerte der Impulswerte des PiKoder/SSC, wie im folgenden Bild dargestellt, anzupassen.

Hierzu kommt das PiKoder Control Center (PCC) zum Einsatz wie im User’s Manual für den PiKoder/SSC wRX beschrieben.

Damit ist der Aufbau abgeschlossen; die Funktion der Apps ist in den Bedienungsanleitungen beschrieben.

Ausblick

Die Implementierung weiterer Konfigurationen und Funktionen ist inzwischen erfolgt und in die Android App udpRC4UGV eingeflossen, die in der Fortsetzung dieses Blogs beschrieben wird.

Da sowohl die Apps Open Source sind und das Empfänger-Protokoll offen gelegt ist, können natürlich auch eigene Modifikationen und Erweiterungen vorgenommen werden.